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The recently developed spinor strong interaction theory, which successfully 
accounts for linear confinement and classification of mesons as well as unmixed 
meson spectra, is applied to semileptonic decays of the ~, K, D, and B mesons. 
These mesons themselves generate mass Mw for the mediating gauge boson; no 
Higgs boson is needed. The theory is also applied to purely leptonic interactions. 
It is shown that the results of the standard electroweak model can be taken over 
with the Higgs boson replaced by the above mesons. The Cabbibo angle 0 c is 
given by tan a~ c = (pion mass)/(kaon mass), in agreement with data. The pion 
decay constant F is essentially a ratio between two large constants introduced to 
make certain infinite integrals finite. Mw is also related to a similar cutoffconstant. 

1. I N T R O D U C T I O N  

The present theory o f  kaon and pion decay into muons  and neutrinos 
is phenomenological  and over  three decades old (Kiill6n, 1964; Lee, 1981). 
It is essentially kinematical and accounts for the ratio o f  the rate o f  pion 
decay into muons to that into electrons. The strong interaction parts o f  these 
decays are expressed in terms of  two unknown constants, the pion decay 
constant F and the Cabbibo angle Oc, which are determined by the two 
observed decay rates. Thus, the theory is left with no further predictive power. 
In addition, the Cabbibo angle obtained differs considerably f rom those 
obtained from other data, for instance, baryon beta decay. 

Recently, a strong interaction theory (Hoh, 1993; hereafter denoted by I) 
has been developed. Linear confinement  arises naturally and no approximation 
intervenes in the basic covariant starting equations and the mass spectra o f  
unmixed ground-state mesons. The predicted masses agree well with data 
and the meson spectra are classified accordingly (Hoh, 1996). These results 
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are not obtainable in conventional models, which also predict many unseen 
states. Gauge invariance of the spinor strong interaction theory (Hoh, 1994a; 
hereafter denoted by II) accounts for the gauge boson masses without the 
unseen Higgs boson and resolves the so-called U(I) problem. The zero mass 
of the photon requires the nonexistence of the pseudoscalar isosinglets ua + 
dd, sg, c~, and bb('qb) and forces them to become the mixed mesons x I, xlr 
and possibly "q' which do not transform according to U(I). 

The purpose of this paper is to apply the spinor strong interaction theory 
to semileptonic decays of pseudoscalar mesons typified by K § and -tr § ~ I.L + 
+ v~ and to purely leptonic interactions. The main results are tan Oc = m~/ 
mr, in near agreement with data, and that the purely leptonic interaction 
results of the standard electroweak model without quarks, such as the decay of 
the muon at rest, can be taken over without the aid of the unseen Higgs bosons. 

In Section 2, the action including isodoublets of II is augmented by a 
lepton part for the kaon decay and solutions of I are reviewed with the aid 
of Appendix A. These solutions are modified by introducing two large con- 
stants in Section 3 to render two infinite integrals finite. In Section 4, the 
decay amplitude is obtained from the first-order terms of the action dependent 
upon the gauge boson field W-. Here, quantization aspects of the spinor 
strong interaction theory considered in II and improved upon in Appendix 
B are used. The W- field as well as its mass Mw are derived from the second- 
order terms in the total action in Section 5. The decay rate is then obtained 
in Section 6 using the decay volume derived in Section 7. 

Section 8 shows that the meson action of Section 2 remains unchanged 
after generalization to include internal functions and operators. In Section 9, 
the action including isotriplets of II is augmented by the same lepton part as 
above. It is shown that inclusion of internal operations is essential for a 
correct action. The pion decay rate is derived in Section l0 and differs from 
that of the kaon only in their masses. Comparison with data is carried out 
in Section I 1. With the aid of Mw and the quantized Hamiltonian obtained 
in Appendix B, the large constants introduced in Section 3 are estimated and 
found to be indeed large and are therefore justifiable. 

In Section 12, the action of the standard electroweak model without 
quarks is compared to the action of Section 2 with respect to purely leptonic 
interactions and extensive conclusions are drawn. 

2. ACTION FOR ISODOUBLET MESON DECAY 

In the standard electroweak model (see e.g., Lee, 1981) the total action 
consists of a gauge boson part, a quark part, a Higgs part, and a lepton part, 
together with their couplings. The action St2 of (II 6.6) consists of the same 
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gauge boson part and a meson part replacing the quark and Higgs parts above, 
but contains no lepton part. 

The action employed here is basically the same as St2 above comple- 
mented by the lepton part, together with their couplings. K + ---> i x+ + v~ will 
be considered as a typical semileptonic decay of isodoublet mesons. The 
action reads 

S2M L : SF2 "3 I- SLr "~- SLI di- SLr n + SM2 (2.1) 

Here, St2 is the gauge boson action (II 6.5), 

SF2 = - -~  d 4X F~Fc~13 + ~ G?f3Gl.13 
/=1 

p c  ~ = o ~ c e  - o a c  ~ 

G? ~ = O~WP - O~W? - ej~tgWyW ~ (2.2) 

SLr, SLt, and SLm are the massless right-handed singlet, left-handed doublet, 
and muon mass parts, respectively, of the lepton action. In spinor form, 
they read 

i I t[~( i ) ~  SLr = - - '4  d4X Oab + ~ Yg'C,b + C.C. (2.3a) 

i I . SLt = --~ d4X •215 + c.c. 

(X'b/ (2.3b) 

1 I S ~  = - ~  d4X m~(q~• + c.c.) (2.3c) 

i i 
D ~ = 0 "b + ~ gqrW ab + ~ Yg'C ai' (2.3d) 

where Xtaa is the Hermitian conjugate of Xda and Y the hypercharge. The 
subscripts ix and v refer to muon and neutrino, respectively, and m~ is the 
muon mass. The meson action SM2 is given by (II 6.4), 

SM2 = I d4X ~ = 
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X [(aDf, + O~f~)Wa(X)x6(x)l 

1 [(aDba + a~a)w~(X)~a(X)][(l __ a)D# - 0x#]Wa(X)t~(x) + h.c. / 
/ 

) 
+ (~p - M2)~~(X)XItd(X)[Oeb(x)xb(x) + h.c.]~ 

where 

(2.4) 

(XFd+(X)] 
'I'd(X) = \,I,~0(X) } (2.5) 

Wd+ refers to K § and Wd0 to K ~ CP symmetry violation effects are ignored. 
In Appendix A, the various symbols are explained where deemed necessary 
and some results of I and II are reproduced. The first part of Appendix B 
considers the change of the normalization constant (B 1) in St2 to unity. 

The spinor strong interaction theory is based upon manipulations of  van 
der Waerden's spinors, the right-handed tl~ and the left-handed Xb, a, b = 
1, 2. These appear naturally in the right- and left-handed actions (2.3a), 
(2.3b). The ~o and ~/5 matrices carried along in the derivations in Dirac's 
bispinor formalism are avoided here. 

SU(2) • U(1) invariance of St2 and SM2 has been shown in Section 6 
of II. This invariance is simply extendable to SLr and Su of (2.3) since the 
forms therein are already present in (2.4). Sty, however, is not invariant under 
SU(2) • U(1) transformations, so that a Glashow model, which disregards 
this noninvariance, is adopted in this respect. This inconsistency is related 
to the fundamental problem of the origin of  lepton masses. 

The terms in the action (2.1) can be grouped in powers of the small 
parameters g and g'. The assigned ordering is as follows: 

�9 zeroth order: terms in SM2 not containing g or g' 
�9 first order: g, g' and other first-order terms in S~r2, terms in SL 

not containing g or g' (2.6) 
�9 second order: g2, gg,, and g,2 terms in Su2, g and g' terms in 

SL, terms in SF2 not containing g 

To zeroth order, only SM2 with g and g' ---> 0 survives, which upon variation 
yields the basic meson equations (A6). With (A5), the steady-state solution 
of these equations for ground-state pseudoscalar mesons at rest is given by, 
according to Section 7 of I, 

qt dO J e -iE~176 (2.7) 

•ad(x) : ~aexo(X ) = ~aXo(r)ei~176176 = -tltae(x), r = I xl (2.8) 
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Here E0 is the mass of the meson neglecting electromagnetic correction, ~o 
is the relative energy among the quarks, and x0(r) is the radial meson wave 
function in relative space determined by (A7) and (A8). Further, (I 6.6) and 
(II 5.2b) read 

= i +  ~oo/Eo, ew = 1 -4to~/E~o (2.9) a %- 

The first is an allowed choice and the last a definition. 
Now, Ad+ = Ado = Ad for given • is a fixed quantity related to the 

confinement slope 13,,0 of (I 7.6b) or 

r ----> oo) = -[Smor (2.10a) 

2[3m0 = A~ dr r2x~(r) (2.10b) 

where only one of K § or K ~ is considered. Note that 

[l---~oo 

A,~ :/: 1/2v/~-~o ~ > 0 (2.11) 

where 1~ is a large normalization volume. 

3. MODIFIED MESON WAVE FUNCTIONS 

Due to (2.11), the integrals over X in (2.4) become infinite for the 
zeroth-order solution (2.7) and (2.8). Likewise, the integral over the relative 
time x ~ is also finite. These infinities are considered in Appendix B. For this 
reason, I make the Ansatz 

{ ~ d+ ~ { a(a~ - + aO ) ' X~ \ = d+~ )~A.o-(X/LM)20-iEo,$rO 
~*ao,] ~a~  + a~(X~ f "a~ ~ ,, (3.1) 

xae(x) = 8aexo(x ) = 8a~e-(X~176 ) = -dfe(x)  (3.2) 

modifying (2.7) and (2.8). L 3 is a large volume in which the meson is likely 
to be found; no generality is lost by choosing this region to be centered at 
X = 0. "to is a long period of time into which the relative times of the quarks 
are likely to fall. Deviations introduced by the approximations (3.1) and (3.2) 
includes generation of triplet wave functions for vector mesons according to 
(I 6.4), where K is interpreted as - i  a/OX. These vanish in the limits of  LM, 
"to ---> oo. Integrals over X and x ~ in (2.4) are now finite due to the factor 

exp[-2(X/LM) 2 - 2(x~ 2] (3.3) 

introduced. 
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aid02 and a ~  are unity associated with K § and K ~ respectively. They are 
introduced for generalization together with exp(-iEo X~ to annihilation oper- 
ators, considered in Appendix B, later in Section 4. #dl2(X ~ and a~(X ~ are 
first-order quantities varying slowly in time and characterizing kaon decay, 
just like the similar quantities employed in nonrelativistic quantum mechanics. 

4. DECAY AMPLITUDE 

Convert all the products of  first-order derivatives in (2.4) into a form like 

+ / '  e + ~ e + ~ e (0~a Xo)(0x~dX~) = cg~a XaO,,~aX,~ - ~a Xa00xXa (4.1) 

Terms of the type of the last term together with the qbp - M 2 terms in (2.4) 
vanish since these are just the terms of the basic meson equations (A6), after 
conversion by means of (A3), times common wave functions. Surface terms 
like the first term on the right of (4.1) vanish for the a(a ~ part of (3.1) due 
to the factor (3.3). For the time-dependent perturbation a(al)(X~ the surface 
terms arising from all products of the type (4.1) in (2.4) yield the first- 
order terms 

d4X d4x ~ {[(1 - a)#" - O~]~J(X)• + O~:)~e~(x) 

+ (aOe: + O~e:)*~(X)~(X) ( ( 1  - -  a)O ~ - -  O ~ ) ~ , ~ X ) •  

+ X--*~ ,a- -~  1 -a ,O~- -~  -0~} 

= -ilEo[atdl2*(X ~ ---> oo)atd~ + a~*(X ~ --> oo)aN] 

• a2 f d3X e-2(w~~t)2 f d4 x •176 (4.2) 

At laboratory time X ~ ---> -o% meson decay has not started, so that a(al.~(X ~ 
---) - ~ )  --) 0 in (4.2). As considered in Appendix B, the following elevations 
into annihilation operators are made 

a<d~ -ie~176 ---> aa§ a~d~e -iE~176 ---> aao (4.3a) 

These refer to a K § and a K ~ respectively, at rest. The initial Ii) and final 
(fl states are a K § meson at rest and vacuum, respectively, denoted by 

Ii) = I K+), (fl = (01, (010) = 1 (4.3b) 

Therefore, 

ad+ I i) = 10), ad01 i) = 0 (4.3C) 
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Sandwiching to (4.2) between (fl and Ii) yields 

.1 2 "tr "IT x2( r)e_2(xO/ro)2 -'-~EoS:,Aa~/~'~ L3 I d4x 

where 

(4.4a) 

S~ = (Ol@~*(oo)eiE~247 I K +) = a(a~*(oo)e ie~174 (4.4b) 

is interpreted as the usual S-matrix element or decay amplitude. 
The first-order term (4.4a) is to be balanced by the remaining first-order 

terms containing gW in (2.4). Here, the constant value S2ML, (2.1), is balanced 
off by the zeroth-order terms of Section 2. The first-order terms in SL, (2.3), 
vanish for plane wave solutions for the muon and the neutrino. Since the K + 
decay is a charged one, the neutral gauge fields W3 and C in (2.3d) are 
dropped. Further, W + defined by (8.5) below is seen to couple to aa0 and 
such terms also drop out by (4.3c). Only terms containing W- remain and 
these read 

- w-ba~• - a)[(aO e + Ox~/)~e+~(x)l + Ox ~ -Ox } + c.c. 
a---~ l - a ]  

(4.5) 

a~* in ~ b  remains unity, as was mentioned below (3.3), and operationally 
corresponds to a()~_*(X ~ ~ ~) in (4.2). For ~d+, (4.3a) is used, as in (4.2). 
Sandwiching (4.5) between (fl and l i) and applying (4.3b), (4.3c) leads to 

1 2 ~,~ gAa j d'X EoW~176 l d4x x2(r)e-2(~~ (4.6) 

The decay amplitude is obtained by equating (4.4a) to the negative of (4.6): 

S: = - i  ~ L~ 3 d4X W~ ie~176 (4.7) 

The right of (4.7) is an integral over the first order interaction Lagrangian 
density. By following the usual quantization procedure (see e.g. Chap. 6 of 
Lee (1981) where Coulomb gauge is chosen), it can be shown that this density 
is simply the negative of the corresponding first order interaction Hamiltonian 
density, noting that W ~177 is independent of X here. Therefore, (4.7) can be 
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regarded as derivable from (2.4) in the conventional S-matrix formalism, 
apart from a constant factor. 

5. SECOND-ORDER PERTURBATION AND DECAY RATE 

The first-order treatment of Section 4 led to the decay amplitude (4.7) 
dependent upon W ~177 which will now be obtained from the second-order 
terms in (2.1) identified by means of (2.6). Variation of (2.1) with respect 
to W+~(X) yields 

1 DWg-b -- 1 1 ~ Oab(aedWgd) _ g2(...) + ~ gxo~X,a 

ew g2 I d4x We1{a[t~+X~a(X)XIrd+Xfb(x) + X ~ r + C.C.] (5.1) +3~ 
where g2(...) denotes W cubed terms to order g2. Making use of  (3.2) and 
the upper of (3.1) and contracting (5.1) by ~ leads to 

O W  O- _ (O/aXo)(oaWg) - M2WO-e-2tXlLM)2 

1 
- 2x/~ g[(x~,(X)• + •215 (5.2a) 

l ;  I M 2 = ~ e~g2 d3x A2x2(r) dx ~ e-2(x~ 

= 7r~/2--~ eo~g2~mO'rO = (80.22 GeV) 2 (5.2b) 

where Mw is identified as the W • mass generated by K + and differs by a 
factor proportional to "rOf~mO/A 2 from the Mw expression of  (II 6.12b). This 
is due to the fact that (BI) enters in the total action St2 of (II 6.6), as 
considered in Appendix B, and due to (3.2). The large value of Mw stems from 
an infinite integral over the relative time x ~ made finite by the introduction of 
a cutoff parameter "to in (3.2). 

The first two terms of (5.2a) are much smaller than the third one (Marci- 
ano and Sirlin, 1976) and are therefore dropped. This corresponds to the 
conventional Fermi point interaction approximation. Eliminating W ~ 
between (5.2a) and (4.7) yields 

Sfi - . t r x / ~  g2M~v2L~t3 d 4X eiF'~176 + Xv2X)t2) ( 5 . 3 )  

from which the decay rate 

F(K + - ,  ~+v~) = ~ I ~ S~I21T (5.4) 
final states v spin 
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is evaluated. Here, T denotes a long time period during which decay takes 
place. 

6. K § ---> It § + va DECAY RATE 

The complex conjugates of the plane wave functions of the particles 
ix- and v~ represent the antiparticles ix§ and ~ .  respectively, and read 

/X(~)~ 1 E~ - -E~--- " 
\X(~)j  = ~ e -ipvX-iEv'x'~ (6.1a) 

--PuJ + iPv2 ' 1 + Pv3 

= e -ip~x+ieax~ 1 + m .  

P '-iP' I 1 I 

(6.1b) 

The superscript ( - )  denotes negative-energy solutions for ~ ,  so that (6.1 a) 
corresponds to the creation of a positive energy v~ propagating in the opposite 
direction. The superscript (+)  denotes positive-energy solutions and the com- 
plex conjugate of (6.1b) corresponds to the creation of a W § Here V is the 
normalization volume of the leptons, p their momenta, and E > 0 their 
energies, and the indices l, 2, 3 indicate the three spatial directions. There 
are two solutions, which are separated by commas in the brackets and associ- 
ated with opposite spin orientations, in each of the four wave functions. 

Calculation can be simplified by choosing p parallel to the third axis 
of X and introducing a compensation factor of 1/,~/8. Summing over the spins 
leads to 

(XvlXp, i -1"- XvE~(ix2) 
v spin 

=~I~ e'(P~'-POX-i(E~'+E')x~ +m'( I 'P" 1 
x/8V V ~ Ed ~ m . }  (6.2) 

Combining (6.2) with (5.3) and carrying out the integrations yield 

,,~pin S'a = 2at g2M(v2L;c3V-' 1 + 1 

X (2~r)4~(p~ -- P~)8(Eo - E,, - g~)  (6.3) 
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Employing the known relations 

Y~ =2(2~r)-6V2fd3p~fd3p~ 
final states 

[5(P~ - Pv)5(Eo - Ev - E~)] 2 = (2'n')-4[~T~(p~ - p05(Eo - E~ - E~) 

E2 = m 2 + p2 

G = (v/218)gZlg~ (6.4) 

(5.4), and (6.3), following the conventional procedure (K~ll6n, 1964), we 
obtain the decay rate 

NeG2m~ [ _(m~,]2] 2 
r ( r  § - ,  - ~ 1 \~o) ] ( 6 . 5 )  

where Eo is the K + mass and (7.4) below has been used for the decay volume 
II in (6.4). 

7. THE DECAY VOLUME 

The decay rate (6.5) is proportional to the decay volume 1). In the 
conventional approach (K~ilMn, 1964), 1) is canceled by the same volume in 
the squared normalized amplitude I*KG 12 of a Klein-Gordon particle 

*KG = (2Eol-l)-1/2e-ie~P+'Kx (7.1a) 

o f  .[ (0_~) ] _ _ ~ f  1 0 X  o d 3 X  I ai t~G a'ItKG - -  C.C. = d 3 X  ~ = 0 (7.1b) 

I '  d3X ~ = 1 (7.1c) 

where the first integral has been normalized to unity. In the II --~ ~ limit, 
~:G --~ 0. In the spinor strong interaction theory, however, the corresponding 
amplitude (2.11) cannot vanish due to the requirement of confinement. 

The analog of (7.1b) in the spinor strong interaction theory has been 
largely derived in the Appendix of II, and proceeds as follows. Take the 
complex conjugate of (A6b) and multiply it by ~ .  Subtract the resulting 
equation from (A6a) multiplied by • The result can be put in the form of 
(II A2), 

OfaX~31,e f~  - afiat~01bctl~a = (a~• - (O~a~w162 (7.2) 

We insert the zeroth-order solutions (A5) and (2.7)-(2.9) for K § into (7.2) 
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and integrate over x to obtain the first of (II A3) and (II 2.1 la). Integrating 
once more over X and multiplying by i produces the equivalent of (7.1b), 

(O/OX~ I d3x I d3x E~ = ONJOX~ = O (7.3) 

Unlike (7.1b), where the integral has been normalized to unity, the integral 
of (7.3) cannot be so normalized, but assumes a large, constant value 

Ne = 8"rrl3moEotl (7.4) 

where (7.1c) and (2.10b) have been consulted. NJ4~I'I is simply N~o of 
(II 2.1 la). 

8. INCLUSION OF INTERNAL COORDINATES 

A full description of the meson wave functions includes the internal 
functions, as in (I 5.4). For the K doublet, they enter like 

( ~d+(X)~ {~d+(X)~a+(Z, U)) (8.1) 
%oCX)} ~ ~%0<x)~(z, u) 

where the internal functions 

1 
~§ u) = - ~  (zlu3 - ulz3) 

1 
~0(z, u) = ~ (z2u3 - u%)  (8.2) 

are the normalized forms of (I 9.1b) for the K's. Here z and u are the internal 
coordinates of both quarks and obey the same orthonormal relations as those 
for unitary spinors, 

ZPZr : UPUr = ~r (8.3) 

with all other bilinear products vanishing. Here, p and r are the flavors of 
the quark and antiquark, respectively, with the indices 1, 2, and 3 referring 
to up, down, and strange quarks, respectively. 

The generalized (8.1) calls for a corresponding generalization of the off- 
diagonal elements of (2.3d). Thus, 

i (  W 3 ~/r2 W+~[XIt d+~ i (  W3 x//-2 W+D+~(Xtr d+~d+~ 
g v/2 W- -W3 J~xtrdO] "-~ 2 g x/2 W-O_ -W3 ]\*dO~O] 

(8.4) 
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where 

W •  = W~(X) - iW2(X) (8.5) 

D+ = z z OlOz 2 - z20lOzn + z--> u 

D _  = z 20/Oz ~ - z~ O/Oz2 + z --> u (8.6a) 

D+~o = ~+, D-~d+ = ~o, D+~d§ = D-~d- = 0 (8.6b) 

Applying (8.1) and (8.4) to (2.4) and (2.5) and making use of (8.2), (8.3), 
(8.5), and (8.6) does not change (2.4). Similarly, qbp in (2.4) remains unchanged 
after application of (A5) and (8.1)-(8.3) to (A4). 

The representation of internal properties of hadrons in terms of internal 
functions and internal operators such as those of (8.2) and (8.6) is principally 
the same as the conventional representation in terms of complex vectors and 
matrix operators, such as the SU(3) matrices. However, that each quark has 
its own internal coordinate z or u allows for an internal symmetry required 
to classify mesons (I 9.2) and baryons (Hoh, 1994b). 

Further, the above representation puts the internal operators producing 
the quark masses, hadron charges and hypercharges, and weak charges as 
eigenvalues on a formally equal footing as the operator 0x in relative space- 
time in (2.4) producing the relative energy and momenta between the quarks 
and also the operator 0 in (2.3d) in laboratory space-time producing the total 
energy and momentum of the meson. The quark mass operator mop(Z, u), (I 
9.3), leads to the quark mass term Mm in (2.4), the hadron charge operator 
has been employed in Hoh (1994c), and the hadron hypercharge operator 
can be similarly defined and has the eigenvalue Y in (2.3d). The charged 
weak charge operators can be extracted from (8.4): 

�89 • ---) �89 (8.7a) 

, 0) 
or• = - ~  (an --- hr2), cr+ = , or_ = (8.7b) 

9. ACTION FOR ISOTRIPLET MESON DECAY 

The treatment of "rr + ---) I~ + + v~ decay below is entirely analogous to 
that for K + decay. The action St3 of (II 7.6) is the isotriplet version of St2 
in Section 2. Augmenting it by the lepton actions SL of (2.3) and observing 
Appendix B regarding (B1) leads to the total action 

S3ML : SF3 "1- aLl "4- SLr "{- alto "~ aM3 (9.1) 

St3 = - -~  d4X  ~ .  G?~Gr (9.2a) 
l = l  
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SM3 = SM2 with D --> Dt and ~a  --> W, (9.2b) 

SM3 differs from aM3 of (II 7.4) in that the Cartesian representation there is 
replaced by spherical one here. The analogs of (2.3d) and (2.5), observing 
the left-hand side of (8.4), are 

i [ W3 V/ '2W + 0 ~ab 
~b : oab + ~ g[  ~ W- 0 ~ W+ I 

o . ~ w -  - w 3 /  

[,t,,+(x) \ 
%(xO =/ ' I '~(x3  ] 

\,i,,_(x~/ 

(9.3a) 

(9.3b) 

Wt_+(X) and Wto(X) are the wave functions of "rr -+ and "rr ~ respectively. 
The transition of the g W  term in (2.3d) to that in (9.3a) passes through 

the following steps. For pions, the analog of (8.1) is 

.,+(x) \ / ,i,,+(x)~,+(z, u) \ 
,i, ~(x) i __, I .,,(x)~,.(z. u) ! 
.,_(x)/ \.,_(x%_(z, u)/ 

(9.4) 

and of (8.2) is 

1 1 
6,+ = ~ (zl',2 - u'z2), ~,- = --~ (z~u, - U~Zl) 

I~  = ~(zlul - z2u2 - z~u I + z2u z) (9.5a) 

The stepping operations corresponding to (8.6b) are 

O+~,_ = v/2 ~ to ,  D+~to = ~ ~t+, 

O_~,+ = v/2 ~o, O_l~o = x/~ f;,-, 

D+~,+ = 0 

D - t -  = 0 (9.5b) 

The SO(3) operators corresponding to trz of (8.7b) are 

S+ : ~ (S  1 -~- iS2) = 0 

0 

S _  = ~ (S  I - iS2) = 0 
1 

(9.6) 
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Transition from the SU(2) case of (8.7) to the SO(3) case is just the replacement 
of cr by S on the left-hand side of (8.7a) together with the replacement 

gW3 0 1 ~ 2 gS3W3 = ~ gW3 0 (9.7) 
0 1 

which clearly shows the physical equivalence of both operators. Following 
up this transition by a generalization analogous to (8.7a) leads to 

�89 W +- --> �89 W +- ---> �89 W +- (9.8) 

Application of (9.3b)-(9.5) to (9.2b), observing (9.8) and (8.3), shows that 
(9.2b) remains unchanged and that (9.3a) holds; the formal equivalence of 
the gW operators in (9.3a) and those in (8.4) is manifest. 

Note that the internal operators here are nontrivial since they produce 
the ~ factor in (9.5b) and hence in (9.3a). In the absence of internal functions, 
generalization takes place via r ---) SW and the 4c2 factor in (9.3a) would 
be absent. 

10. r + --> ~t + + vt, DECAY 

The treatment starts from (9.1) and follows the same procedures as 
those starting from (2.1). Thus, Appendix A and (2.6)-(2.11) hold with the 
subscripts d ---> t and the addition of the subscript t -  for "rr-. All the qY's in 
(9.3b) have the same amplitude as those in (A5), so that the potential ~bp for 
and wave functions of K and ar are the same, in accordance with Section 10 
of I. 

The ansatz (3.1) is replaced by 

( ~t+ ~ (a~~ + a}l+)(X~ 
~to ) = a~ ) + a~)(X~ ~4te -tx/L~)z-iE~176 (10.1) 
*,_ \a~~ ) + a~l_)(X~ 

where At = Ad. The development from (3.2) to (4.7) similarly holds with the 
above replacements and with 

li) = I'rr +) (10.2) 

at+li) = 10) ,  atoli) = a,_li) = 0 (10.3) 

instead of (4.3c). Sections 5-7  analogously hold and (5.2b) is recovered; ar + 
generates the same W -+ mass as K § does. This is analogous to the fact that 
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K ~ and ~o generate the same W -+ mass in (II 6.12b) and Section 7 of II. 
Thus, the decay rate (6.5) applies upon setting Eo to the pion mass m~,, 

NeG2m2 [ (m~/212 
r('rr + ----> Ix+v~) - ,trSL613mom~ 1 - - -  (10.4) \mR/  J 

11. COMPARISON W I T H  DATA 

The main prediction that can be checked with data is the ratio of K + 
decay, (6.5), to "rr + decay, (10.4). Putting Eo = mr,  the kaon mass, in (6.5), 
we obtain from these relations 

['(K + --> IX+v~) : ~m~r~'lm ~ - m~ 
1.41 (11.1) 

which compares favorably with the observed value of 1.34 evaluated from 
data (Particle Data Group, 1994), from which the masses in (11.1) have also 
been obtained. Another form of comparison starts with the decay rates given 
in the literature (Lee, 1981), 

G2m 2 
F(Tr + --> ~+v~) (F cos 2 = Oc) ~ (m2~ -- m2~) 2 (11.2) z"ffm~ 

GEm~ (m~ - rn~) 2 (11.3) 
F(K + --> ~+v~) = (F sin Oc) 2 2"rrm----~ 

where F is called the charged pion and kaon decay constant. Comparison 
with (6.5) and (10.4) yields the Cabbibo angle via 

tan Oc = m J m r  = 0.2827 (11.4) 

Compared to the observed value of  0.275, the agreement may be considered 
as good in view of the fact that the muon mass term St,, in (2.3) breaks 
the SU(2) symmetry and that radiative corrections to these processes are 
fairly large. 

Decay of  the K and 7r into positron and neutrino is found by replacing 
the muon mass by the electron mass. The ratios of these decays are the same 
as those in the literature (Kall6n, 1964; Lee, 1981). The D and B --> IX + 
v~ decay rates are obtained by replacing the kaon mass by the D and B 
masses, respectively. These rates are essentially in inverse proportion to their 
masses and are too small to be observed, in agreement with data (Particle 
Data Group, 1994). 
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Comparison of (10.4) to (11.2) yields 

8Ne 64 f l  
(F cos  "0c) 2 ,ll.4m2[~moL 6 ,n.3m~ r L6 (11.5) 

where (7.4) has been used. Thus, the deca~, constant F is essentially the ratio 
of two large volume-related constants, x/fl and L 3, which render two infinite 
integrals over X finite. Conversely, (11.5) shows that the decay volume l'I 
is proportional to the square of the meson volume L 3. With the data F �9 cos 
Oc = 0.128 Gev, this proportionality constant is 

L~ 3 = f i lL 6 = (0.165 Gev) 3 (11.6) 

which is also proportional to t ~(0) 12, the square of the conventional quark- 
antiquark wave function at origin (van Royen and Weiskopf 1967). 

If L 6, D, % ---> oo were allowed, the zeroth-order solutions (2.7) and 
(2.8) would be recovered. However, (5.2b) shows that the relative time scale 
"to is limited by Mw The 13,,o of (2.10b) has been obtained via numerical 
integrations in I and Hoh (1996) and ranges from 0 for no confinement to 
0.024 GeV 3 for what appears to be a moderate confinement with a strong 
interaction meson radius less than 1 fm. Using this value and putting the 
relative energy tOo to 0 in the second of (2.9), we obtain from (5.2b) with g2 
= 0.03187 a value of % -- 1.3 • 106 fm. 

This To far exceeds the above meson size. According to the consideration 
from (Bl0b) to (B11), LM is estimated to be of the same order as "r 0, or LM 

2 • 106 fm. Inserting these values and m~ into (11.5) yields a scale 
~"~1/3 ~ 3.3 • 101~ fm for the pion. The corresponding value for the kaon is 
( m J m r )  tl3 times smaller. These values show that the approximate Ans~itze 
(3.1), (3.2), and (10.1) are fairly close to the zeroth-order solutions (2.7) and 
(2.8) and are therefore justifiable. 

12. PURELY LEPTONIC INTERACTIONS AND NATURE OF W e 
AND Z 

It will be shown below that the purely leptonic interaction results of the 
standard electroweak model, such as decay of muon at rest, can be taken 
over here. Nonleptonic interactions are then briefly discussed. 

The lepton action of the muon family of (2.3) is generalized to include 
the electron and taon families, so that (2. l) becomes 

= ~ d4X ~-'2ML : SF2 -~" ~ (SLr + Su + S ~ )  + Su2 (12.1 S2ML ) 
.I p.--->e,lt,'r 

where e denotes the electron and x the taon. 
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The corresponding action in the standard electroweak model without 
quarks [(22.58) of Lee (1981)] reads 

SSM = f d4X ~SM = SF2 + E (SLr + aLl -~ SLmH) q- SH2 (12.2a) 
J l$,----~e,o.,,f 

u(4,,~) = 40~ ( + k + ,  - pg)2 (12.2c) 

(~ d~n = ~b 2 (12.2d) 

where Sm is the action for the Higgs field ~bn together with its coupling to 
the gauge fields. U is a potential and P4r and PH are constants. 

SLmU is the lepton mass term and is an integral over trilinear products 
of the right- and left-handed lepton fields and the Higgs field. It is invariant 
under SU(2) X U(I) transformations, contrary to its counterpart St.M of (2.3C). 
It is not possible to modify SLM to a scalar like So,/r because ~bn entering the 
latter is a scalar, while its counterpart, the kaon, is the time component of a 
vector in the rest frame. If the kaon doublet is replaced by a pion triplet, it 
is not even possible to form a one-component quantity like St.,,. However, 
this discrepancy can be overlooked here, since the lepton mass terms are not 
directly involved in obtaining the results below; a Glashow model has been 
adopted here. 

Equations (2.1) and (12.2a) now differ only in their last terms Sm and 
Sin, which are compared below. After suitable transformations, (12.2d) is 
usually put in the form 

where • is the Higgs field with mass t~t. In Sin, terms quadratic in the 
W • and Z, the massive neutral gauge field consisting of the usual linear 
combination of W 3 and C (Lee, 1981), provides masses to these fields. Upon 
variation with respect to W '~§ the leading terms of S~ and Sm yield 

DWg - O~O f~ W~ + MZriWg = g2( . . . ) ,  (12.4a) 

MwH = gpt4/x/r2 (12.4b) 

where g2(...)~ is given by (C3) in Appendix C. 
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In Sin, the role of the Higgs field • is played by the zeroth-order 
solutions (2.7) and (2.8) or rather (3.1) and (3.2). The counterpart of (12.4a) 
is obtainable from (5.1) with (3.2) and (5.2b) and its form has been given 
by (II 6.13a), 

D W~ - O~OaW~ - M 2 W  -~' = g2(...)~ (12.5) 

Putting M w n  = M w  we can determine the constant On- 
Purely leptonic interactions involve 4 of the 12 leptons inside the summa- 

tion sign in (12.1) or (12.2a). There is thus an extra set of lepton actions in 
addition to that in (2.1). If the massive lepton in this set is decaying, its wave 
functions are considered to be of zeroth order in (2.6). 

There are four gauge boson types mediating purely leptonic interactions. 
The gauge bosons may be charged or neutral, i.e., W -+ or Z, A, defined in 
Appendix C. They may also be singlet or triplet, associated with a pair of 
leptons with their spins antiparallel or parallel, respectively, at the interaction 
vertex. These four types are: (i) W~, (ii) W - ,  (iii) Zo, A0, and (iv) Z, A. 

It is seen that (12.4a) and (12.5) are the same for type (ii). If neutral 
processes are considered, W -+ in these equations is simply replaced by Z, A 
and the same conclusion applies also to type (iv). In Appendix C, it is shown 
that (12.4a) and (12.5) also produce the same observable results for types (i) 
and (iii). 

Therefore, the Higgs boson can be replaced by the K, D, and B isodou- 
blets for all four types. It can also be replaced by the 11 isotriplet if no Z 
is involved. 

The Higgs potential (12.2c) is chosen ad hoc such that the amplitude 
I qbxl = PH :/: 0 in the ground state in order to generate nonzero MwH in 
(12.4b). No such assumption is needed in S~,t2, where the corresponding 
amplitude of (2.7), (2.8), (3.1), and (3.2) are necessarily finite due to the 
requirement of confinement, as is shown by (2.11) and mentioned below (7.1). 

It may noted that for type (ii), (C3c) vanishes for plane wave W -* fields 
with fixed polarizations. The same holds for type (iv) if W ~ is replaced by 
Z, A. Thus nonlinear dispersion of the gauge boson fields due to their non- 
Abelian nature drops out here. The gauge boson fields here obey a Proca 
equation with a source provided by lepton fields. 

While the standard model has been quite successful for purely leptonic 
interactions, it has not been so when quarks are included via Cabbibo-type 
theories. The quarks so introduced, as also in QCD and chiral symmetry 
considerations, are represented by Dirac wave functions. According to the 
spinor strong interaction theory of I, such representations are incorrect, since 
quarks have not been observed, contrary to leptons, which are described by 
Dirac wave functions. 
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This obvious and fundamental observation forms the basis for the con- 
struction of the spinor strong interaction theory. For semileptonic and nonlep- 
tonic interactions, the action of the standard model including quarks [(22.114) 
of Lee (1981)] is replaced by S2M L and S3ML here. 

In nonleptonic interactions, two or more mesons are in motion. Equation 
(I 6.4) shows that the simple rest-frame description (A7) and (A8) is lost 
and the full (A6) and (A4) have to be dealt with. This appears to be highly 
complicated, involving higher order partial differential equations. The situa- 
tion is analogous to that of treating positronium in motion with the Bethe-  
Salpeter equation. 

This circumstance prevents a straightforward solution of  the seemingly 
simple K -+ ---> ,rr + + "rr ~ decay by means of  the candidate action S2ML comple- 
mented by SM3. For K + ---) 3at, however, the pions move nonrelativistically and 
(I 6.4) and its companion equation can, in principle, be solved perturbatively in 
powers of the pion momenta. 

APPENDIX A. REVIEW OF BASIC MESON EQUATIONS 

The spinors are related to Dirac bispinors ~ via (I A3), 

xl  = ~1 + ~3, x i  = t~2 + ~4 

Further, 

(AI) 

~ b x ~  = 8 ~ x  ~ + ~ ' ~ x  -- x~  + x3 x '  - 
X~ + i X  2 XO_X3 (A2) 

(I 6.2) defines 

x" = -~n - ~ ,  X ~ = (1 - a ) ~  + ~ (A3) 

where X is the laboratory coordinate of  the meson, x the relative coordinate 
of  the quark coordinates x~ and xu, and a denotes a constant. 

In (2.4), ~d(X) is the meson wave function in laboratory space-time, 
• and t~(x) are the meson wave functions in relative space-time, • 
and t~(x) are their complex conjugates, Mm is the average quark mass of  (I 
9.6b), and d~p(X) is the interquark potential determined by (I 4.12) or 

DiDli~bp(Xl, Xli) = / Re[W,~(X)~a(X)tl~(x)• (m4) 

with ~ a  ~ exp[iq~M(X)], (II 4.8), so that the right-hand side, hence d~p, depends 
only upon x. The gags factor in (I 4.12) has been absorbed into • and ~, as 
in (I 6.11). 
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A restricted type of variation of (2.4) with respect to the Hermitian 
conjugate of  

= f * d + ( X ) ~ ( x )  (A5) x~fx~, xn) ~q%(x)/-~ 

and a similar relation for ~ yield the basic meson equations 

O~aitrA~(xb xli) = [dpp(Xl, xli) - n~]d~(xl, Xn) (A6a) 

dd 2 d = - -  M m ] x e ( X l ,  (A6b) 01db011 t~e(Xl, Xli ) [(~p(Xl, XII)  Xli ) 

according to Section 3 of H. 
For ground-state pseudoscalar mesons at rest, the solution (2.7) and 

(2.8) leads to the eigenvalue equation 

[E20/4 - M2m + cbp(r) + 02/Or 2 "4- 2 OlOr]Xo(r) -- 0 (A7) 

together with the solution of (A4) 

dpp(r) = -d~'e(r ) + dmlr + dPo (A8) 

according to Section 7 of I. Here ~b~ is the confining potential, which for 
r ---> oo leads to (2.10); dm and dp o are integration constants (Hoh, 1996). 

APPENDIX B. QUANTIZATION AND H A M I L T O N I A N  

The quantization procedure and the Hamiltonian in the rest frame have 
been considered in Sections 8 and 9 of II. The treatment, however, contains 
some inconsistencies, although these do not affect the main features of the 
results there. In the first place, $1w2 and S ~  in (2.1) and (9.1) have been 
multiplied by 

~ M =  [ - 4 f d 4 x A ~ x 2 ( r ) ] - '  (BI)  

of  (II 4.7a) in Sr2, (II 6.6), and St3, (II 7.6), in order to remove the infinity 
arising from integration over the relative time x ~ Variation of ~?MSt, t2 instead 
of St, t2 will, however, not lead to (A6), due to the appearance of meson wave 
functions in both SM2 and (B1). Second, a Klein-Gordon type of amplitude 
expansion in terms of  (7.1a) has been adopted in (II 8.5). This amplitude 
vanishes when the volume l-I approaches infinity and is inconsistent with 
(2.11) or Section 7, where a finite amplitude is required for confinement. 
Third, the annihilation and creation operators defined in (II 8.4), (II 8.5), (II 
8.7) differ from the conventional ones in that they contain ew of (2.9), so 
that the commutation relations (II 9. l), (II 9.2) and Hamiltonian (II 9.5) also 
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depend upon e~. In the tOo = 0 limit, however, the conventional expressions 
are recovered. 

These inconsistencies are removed here. The first one has been removed 
in (2.1) and (9.1). The remaining two are removed by an expression akin 
to (3.1), 

x~ = Ade-(X/LM)2(ad(+)e-iEoXO + a~(_)eiEoX ~ (B2) 

Here, only mesons at rest are considered. The Lagrangian is the integral over 
x in (2.4), from which the canonical momentum conjugate to (B2) is obtained 
by analogy to (II 8.1)-(II 8.3) or 

I-I = boAde-(X/L~)2 iEo(a~( + )e-iEoX~ + ad(_)e -iE~176 (B3) 

where 

bo = ~ dax I• l: (B4) 

and restriction to pseudoscalar mesons according to (3.2) has been made. 
The complex conjugates of  �9 and II are denoted by ~+ and II § respectively. 
In obtaining (B4), it has been tacitly assumed that COo in (3.2) associated with 
the ad(-) term changes sign just like Eo does relative to that of the at(+) term, 
so that particle-antiparticle symmetry is maintained. 

Consider the conventional quantum condition (II 8.9) 

[II(X ~ X'), ~ (X ~ X)] = [II+(X ~ X'), W(X ~ X)] = - i ~ ( X  - X')  
(B5) 

with all other commutators vanishing, and integrate it over X'. For the (7. la) 
type of wave functions employed in (II 8.5) satisfying (7.1c), each of  the 
product terms on the left-hand side of  (B5) contributes a value with magnitude 
1/2. For (B2) and (B3) types of  functions, the corresponding magnitude is 

 ~ f Nfl2 = --~ Aa d3X e - 2~x/LM)2 d4x I • ~ 2 (B6) 

Nf > >  1 is an integration constant analogous to the first integral of  (7.1b) 
and to (7.4). Instead of the zeroth-order solutions (2.7) and (2.8) used to 
obtain Ne in (7.4), the Ansatz (3.1) and (3.2) is inserted into (7.2), which 
upon integration over X and x leads to aN//aX ~ = O. 

This suggests that the commutators in (B5) have to be normalized by 
Nf/2, 

[II(X ~ X), ~ (X ~ X')] = [I-I+(X ~ X), ~ (X ~ X')] = - i N ~ ( X  - X') 
(B7) 
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Applying quantized operators of the type (4.3a) to (B2) and (B3) together with 
their complex conjugates and employing (B7) leads to the usual commutation 
relations and pseudoscalar mesons at rest 

[ad<+), a~<+)] = [aat-), afro_)] = 1 (B8) 

with all other commutators vanishing. 
The Hamiltonian (II 9.3) is similarly normalized and becomes 

H = -~f f d3X [ ~  (IIl-I+ + l-I+H) - ~fu2 ] (B9) 

The same wave functions used to compute Ny are employed to evaluate the 
last term of (B9). Making use of (B3), (A7), and the boundary condition x0(r 
--~ ~) = 0, we find that (B9) becomes 

H = Eo(a~(+)ad~+) + a~t_)ad~_ ) + 1 + AR) (B10a) 

which is the usual expression, apart from AR, which arises in the ~ m  term 
due to the approximations introduced into (3.1) and (3.2) relative to (2.7) 
and (2.8), 

A R = 2Eff2(,ro 2 - 3L~ 2 - A~bp - A(X)) (B10b) 

Ad~p represents an average of the deviation of d~p(r) in (A8) from the actual 
~bp determined by (A4), and A(X) is an integral over the triplet meson wave 
function perturbations mentioned above (3.3). Both terms arise from the last- 
mentioned approximations and are not readily computed. However, (Bl0b) 
indicates that they are of the order of L~ 2 on dimensional grounds. 

For H to reproduce the correct rest-energy eigenvalue Eo, 

AR = 0 (BI1) 

is required. 

A P P E N D I X  C. T Y P E S  (i) A N D  (iii) IN  S E C T I O N  12 

The physical gauge bosons are defined in terms of the gauge fields in 
(2.3d) and read 

v/2 W~,~ = Wxb,~ -7- iW2~, goZ~ = gW3ba - g'Cba 

goAL = g'W3t, a + gCb,~, g2 = g2 + g,2 (CI) 

For type (i), (12.4a) and (12.5) lead to 

_(0z/aX2)Wff + M2nWff = _g2(.. .)0 (C2a) 

_(02/OX2)W~ _ M2W~ = _g2(..  ")0 (C2b) 
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respectively. The last term can be evaluated from a variation of (2.2): 

g2(...)~ = (g2(.. ")0, g2(...)) (C3a) 

g2(..-) 0 = g2[(W-)2Wd- - (W-W+)W0-o ] (C3b) 

g2( . . . )  = g 2 [ W ~ W ~ W -  _ (Wo)2W + + (W-)2W+ _ ( W - W + ) W  -]  (C3c) 

For type (i), (C3b) and the right-hand side of (C2) vanish. The first term of 
(C2a) and (C2b) represents the square of momentum transfer between the 
leptons at the Wff vertex and is usually negligible next to the second term 
there due the large M 2 value. Therefore, (C2a) and (C2b) differ only in the 
sign of the M 2 term. This sign difference, however, does not alter the observ- 
able quantities, which are proportional to (+_M2w) -2. 

Therefore, (C2a) and (C2b), hence also (12.4a) and (12.5), are the same 
for type (i). By replacing Wff by Zo and Mw by Mz, the above result for type 
(i) can be taken over for type (iii). In this result, it is noted that replacement 
of Wff by A0 and Mw by MA = 0 leads to (C2a) and (C2b) becoming the same. 
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